PRF and Bonegraft-Magical tools in Periodontics- A case report

Renjith KP1,*, Harish Kumar VV2, Santhosh VC3, Sreekanth Puthalath4, Shabeer Mohamed5

1PG Student, 2Professor & HOD, 3Professor, 4Reader, 5Senior Lecture, Dept. of Periodontology & Oral Implantology, KMCT Dental College, Calicut, Kerala

*Corresponding Author:
Email: renjithkp3956@gmail.com

Abstract
Periodontal regeneration can be defined as the reconstitution of a lost or injured part to restore the function of the periodontium. Regeneration of lost periodontal tissues are the ultimate goal of any periodontal therapy. Platelet-rich fibrin (PRF) was developed in France by Choukroun et al in 2001. It belongs to a second generation platelet concentrate with autologus fibrin matrix containing cytokines and platelets. In periodontal wound healing it helps and motivates tissue repair. This case report investigate the effectiveness of autologous PRF along with the use of DFDBA (Demineralised freeze dried bone graft) in the management of intrabony defects.

Keywords: DFDBA, Chronic periodontitis, Intrabony defects, Platelet rich fibrin.

Introduction
Periodontal disease can be defined as a complex, multifactorial disease characterized by the loss of connective tissue attachment with destruction of periodontal tissues. The elimination of inflammatory process, the prevention of progression of periodontal disease and the regeneration of the lost periodontal tissues are the ultimate goal of periodontal therapy. Root biomodifications, bone grafts, soft tissue grafts, guided tissue regeneraton and combinations of above procedures include various periodontal regenerative procedures.

A sequence of coordinated interactions between gingival fibroblasts, epithelial cells, periodontal ligament cells and osteoblasts leads to periodontal wound healing. The rupture of vasculature during wound healing leads to fibrin formation, platelet aggregation and release of several growth factors into the tissues from platelets through molecular signals.

As platelets are the hub of growth factors and cytokines they play an important role in periodontal regeneration. Growth factors and cytokines in platelets play unique roles in inflammation and wound healing. Platelets secrete fibronectin, vitronectin and fibrin which acts as a matrix for connective tissue and as adhesion molecules for cell migration.

This has led to the idea of using platelets as therapeutic tools to improve tissue repair particularly in periodontal wound healing. The clinical application of different bioactive surgical additives that manipulate surgical wound environment is the important step in developing new therapeutic approaches in order to enhance the wound healing.

Case Report
A 35 yr old male patient came to the Department of Periodontology KMCT Dental College with slight mobility of upper right canine(13) and also bleeding from the gums. On intraoral examination it was found that there was a grade 1 mobility of 13. An IOPA radiograph was taken and it was found that there was a vertical bone loss in the distal aspect of 13. Endodontic treatment of 13 was performed. Splinting was done on the buccal aspect connecting 12, 13, and 14. After 2 weeks periodontal flap surgery was planned. Lignocaine hydrochloride injection 1.8 ml was injected in the buccal vestibule. Crevicular incisions are placed using a no 11 hard-parker blade from 12 to 14. Flaps are elevated using molt no.15 periosteal elevator. The exposed root surface was thoroughly debrided and root planed. DFDBA (Osseograft) was emptied into a dappen dish and were incrementally added to the defect. Autologous PRF was prepared and mixed with Osseograft and was condensed in the defect. The flap was closed with 3’0’ black braded silk. A tension free primary closure was obtained. Periodontal pack was placed. Antibiotics and analgesics were prescribed. 500 mg of amoxycilin 3 times a day for 5 days and a combination of mefenamic acid with paracetamol for 5 days were prescribed. Post-operative instructions were given. Patients were advised to avoid chewing in the area for 2 weeks and not to brush for 10 days. Suture removal was done after 10 days. Recall appointments were scheduled at 3 and 6 months after the surgery for soft tissue evaluation and recording clinical variables.

Pre-Operative
Discussion
Platelet rich fibrin (PRF) has been introduced by Choukron et al in 2001 belongs to a second generation platelet concentrate. It is a biomaterial which is fibrin-based and is prepared from anticoagulant-free blood harvest without any biochemical additions. The PRF concentrates almost all the growth factors and platelets of the blood harvest. PRF preparation can be done with a REMI centrifuge and a blood collection kit consisting of 24 gauge needle and 9ml blood collection tubes. A sample of blood is taken from the patient and centrifuged at a rate of 3000 rpm for 10 min. The PRF clot will be seen as a middle layer. It can also be prepared in the form of a membrane by sequeezing out the fluids present in the fibrin clot. Since it is prepared without the addition of anticoagulants it is classified as a second generation platelet concentrate. PRF has a dense fibrin network comprising of glycoproteins, and various cytokines. It contains transforming growth factor b1, vascular endothelial growth factor, and thrombospondin-1. The PRF scaffold which contains leukocytes will result in growth factor release regulation of immune reactions, anti-infectious activities and matrix remodeling during wound healing. For favorable wound healing, the slow polymerization mode of PRF plays a crucial role.

Studies show that by stimulation of alkaline phosphatase activity, the production of osteoprotegrin, differentiation of osteoblasts, and increasing the RUNX2 expression, PRF enhances the alveolar bone formation. Li et al concluded that PRF promotes bone augmentation along with soft tissue healing on implant site. PRF helps in the proliferation and
migration of periodontal progenitor cells and periodontal soft tissue regeneration through increased collagen synthesis in periodontal cells.\(^{19}\)

In a study conducted by Choukroun et al, found that the healing properties of bone was enhanced by PRF in implant surgery.\(^{20}\) According to Chang et al PRF promotes the production of osteoprotegrin and stimulates the expression of phosphorylated extracellular signal-regulated protein kinase(p-ERK).\(^{21}\)

Huang et al reported that by upregulation of osteoprotegrin and alkaline phosphatase expression, PRF activates the osteogenic differentiation of the human dental pulp cells.\(^{22}\)

In a one year study on osteome sinus floor elevation using PRF grafting material Diss et al proved that fibrin matrix of PRF promotes angiogenesis.\(^{23}\)

Various types of bone grafting materials including autografts, xenografts, and alloplasts have been applied and evaluated so far. DFDBA has both osteoconductive and osteoinductive properties. By numerous animal experiments Urist et al have shown that DFDBA stimulate new bone formation by osteoinduction.\(^{25}\)

Bonegrafting is a surgical procedure that replaces missing bone with material from patients own body, an artificial, synthetic, or natural substitute. Bone grafting is possible because bone tissue has the ability to regenerate completely if provided the space into which it has to grow. As natural bone grows, it generally replaces the graft material completely, resulting in a fully integrated region of new bone.\(^{26}\)

Osseograft

Osseograft (Advanced biotech Products Ltd India) is a xenograft. It is a demineralised bone matrix composed of type I collagen derived from cortical bone sample with a particle size of 250 micrometers.\(^{27}\)

The major difference between allografts and synthetic grafts is in the histologic results. Allografts heal by regeneration of periodontium whereas grafts of synthetic bone heal by encapsulation of the graft particle by connective tissue.\(^{28}\)

Xenografts are grafts shared between different species. They are osteoconductive, readily available and risk free of disease transmission.\(^{29}\)

When compared to DFDBA in the management of intrabony periodontal defect, a combination of PRF and DFDBA demonstrated better clinical results. PRF acts as biological connector between bone particles. In the self-regulation of inflammatory phenomenon with in the graft material the gradual release of cytokines plays an important role.

Conclusion

PRF and DFDBA shows better results compared to conventional procedure. Since it is patients own blood, PRF is having a less chance for allergic reactions, readily available and cost effective. Results of the present case shows that combined treatment approach with PRF is effective in treating combined endo peri lesions. Ideal ratios of components of PRF preparation are still being investigated and more clinical researches are required to assess the long term effectiveness of this combined therapy.

References

