Modified Stoppa approach for acetabular fracture fixation – reduction techniques

DHURVAS RAMLAL RAMPRASATH1*, S. VETRIVEL CHEZAIN2, INIYA PRASANNA RAJENDIREN3

1Associate Professor, 2Director and Professor, 3Junior Resident, Institute of Orthopaedics and Traumatology, Coimbatore Medical College and Hospital, Coimbatore, Tamil Nadu, India

*Corresponding Author: DHURVAS RAMLAL RAMPRASATH
Email: dhurvasramprasath@gmail.com

Abstract

Introduction: Since acetabular fractures are intra-articular, accurate anatomic reduction is essential to achieve a good functional outcome. Among the various surgical approaches, ilioinguinal and modified Stoppa approaches are the only available intra-pelvic approaches. Even though ilioinguinal approach is more commonly used, modified Stoppa approach is becoming more popular due to the possibility of visualising and reducing quadrilateral plate fragments as well as fixation of posterior column through anterior approach. The aim of our study was to assess the efficacy of various reduction tools/ techniques for reduction and fixation of fractures operated using modified Stoppa approach.

Materials and Methods: We have operated on 16 patients with acetabular fractures through modified Stoppa approach in the age group of 19 years to 70 years (mean 42 years) with male female ratio of 13:3. In patients requiring combined approach, the anterior approach was done first. In all the patients, modified Stoppa was combined with a lateral window. We have used various reduction techniques including transstrochanteric Schanz pin, intra-focal elevators, ball spike, bone hook, iliac crest Schanz pin, Farabeuf forceps, undercontoured plate, etc.

Results: Matta’s radiographic reduction criteria showed anatomic reduction in 10 cases. Clinical assessment using Merle d’ Aubigne scoring showed excellent results in 9 cases and good results in 6 cases. Follow up was done for a maximum period of six months.

Conclusion: Modified Stoppa approach provides better visualisation of quadrilateral surface and sciatic buttress when compared to the ilioinguinal approach. The use of appropriate reduction techniques helps in achieving good reduction of anterior column, at the same time provides opportunity to fix the posterior column from the anterior aspect using anterior to posterior column screws, obviating the need for a separate posterior approach.

Keywords: Modified Stoppa, Acetabulum, Anterior column, Reduction, Fixation, Quadrilateral plate.

Introduction

Since acetabular fractures are intraarticular and involve major weight bearing joint, accurate anatomic reduction is essential to achieve a good functional outcome. The surgical approaches include Kocher Langenbeck, Iliofemoral, Ilioinguinal, combined anterior and posterior approaches, extended iliofemoral, transstrochanteric and triradiate approaches.1-9 Of these approaches, only the ilioinguinal is intrapelvic. Since its original description by Letournel in 1961, the ilioinguinal approach has gained popularity for fixation of anterior wall and column fractures, anterior fractures associated with a posterior hemitransverse component, and even both column fractures.

The modified Stoppa approach is an intrapelvic approach initially used for inguinal hernia surgery by Rives et al and Stoppa et al (in 1984).10,11 Hirvensalo et al (in 1993),12 and later Cole and Bolhofner (in 1994)13 used the same approach with some modifications to visualise the quadrilateral plate and the sciatic buttress for fixation of acetabular fractures, and duly credited Stoppa by describing the technique as modified Stoppa approach. Ilioinguinal and modified Stoppa approaches are the currently available intrapelvic approaches, of which ilioinguinal is more commonly used and its outcomes have been reported more extensively.14 Sagi et al15 additionally described the use of Smith Peterson approach (and/or an anterior superior iliac spine osteotomy) to better visualise the anterior portion of the joint and anterior wall. Qureshi et al16 further described steps to “infrapectineal plating” as a technical trick. In the evolution of modified Stoppa approach, many contributors addressed anatomy and safety concerns, specific technical issues, clinical outcomes, and prognosis mainly through retrospective cohort studies. The aim of our study was to assess the efficacy of various reduction tools/ techniques for reduction and fixation of fractures operated using modified Stoppa approach.

Materials and Methods

This is a retrospective study done in a tertiary care hospital from January 2018 to February 2019 involving 16 patients who had undergone modified Stoppa approach for acetabular fractures. There were 13 males and 3 females in the age group of 19 years to 70 years (mean 42 years). There were a total of 67 acetabular fractures, of which modified Stoppa approach was indicated in 18 patients. Letournel and Judet classification system was used to classify the fractures. After excluding two patients who were not fit for surgery (managed with skeletal traction alone), we had 16 patients operated through modified Stoppa approach. Informed written consent was obtained from all the patients. There were 11 cases of anterior column with posterior hemitransverse, three patients having anterior column and two cases of transverse fractures. We have used combined anterior and posterior approach in stages in 11 patients. In all the cases requiring combined approach, the anterior approach was done first. In all the 16 patients, modified Stoppa was combined with a lateral window (iliofemoral approach).
Procedure
Through a curvilinear Pfannenstiel incision 2 cms proximal to the pubic symphysis, the rectus sheath was incised horizontally and the linea alba was split to expose the retropubic space of Retzius. Using finger dissection, bladder was freed from the pubis; corona mortis was identified over the pubic ramus and ligated; obturator nerve and vessels were visualised (Fig. 1). The peristeum overlying pubic ramus was incised along with iliopsoas fascia to free the external iliac vessels and iliacus muscle anteriorly and obturator neurovascular bundle inferiorly. Deavor’s retractor was used to retract the peritoneum proximally so that sciatic buttress was exposed. Now the fracture was visualised and reduced by various techniques (both direct and indirect methods) mentioned below. C arm was used to aid in anatomic reduction.

Reduction Techniques
1. Pre-operative upper tibial pin traction provided pain relief, at the same time realigning the fracture fragments.
2. A 5.5mm Schanz pin introduced through the trochanter into the head of femur was used to apply lateral traction with the help of a T handle. In cases of protrusio, the head of femur was retrieved from the pelvis with a schuck sound (Fig. 2). In other cases, the anterior/posterior column fragments which were pushed by the head of femur got reduced after the lateral traction was applied.
3. A Hohman retractor/ Cobb’s elevator/ K wire was inserted intrafocally into the fracture and manipulated in a fashion so as to reduce the step created by the overlapping fragments (Fig. 3).
4. A ball spike (straight/ curved) was used to push the fragments which were lifted off from the fracture site. In cases of quadrilateral plate fracture displacement, ball spike was used to push the quadrilateral plate into position (Fig. 4).
5. A bone hook introduced through the lateral iliofemoral window was used to pull the larger displaced pelvic brim fragment (Fig. 5).
6. Manual longitudinal traction applied to the lower limb was also used to reduce the fracture fragments.
7. A 5.5mm Schanz pin inserted into the iliac crest was used to manipulate the posterior column fragments (Fig. 6).
8. Manual pelvic compression was sometimes used to reduce the iliac wing fragments.
9. A Farabeuf forceps was used as a push-pull technique to reduce and approximate the iliac wing fracture fragments, by applying one screw on either side of the fracture.
10. In cases where there was plastic deformation of the pectineal eminence/ quadrilateral plate, an under-contoured reconstruction plate was applied on the bone, so that while tightening the screws applied on either side of the fracture, the plate pushed the deformed fragments into original anatomic position (Fig. 7).
11. An oblique Matta’s clamp was used in some cases to reduce, compress and hold the fragments in position to facilitate plate fixation.
12. A pelvic bone model was kept adjacent to the operating table to help the surgeon in gaining better orientation of the bony contours. Moreover bone model was used to contour the plates preoperatively (Fig. 8).
13. Catheterisation of bladder, pre-operative enema, flexion of the hip and knee to 30° (by placing a bolster under the ipsilateral knee) – all manoeuvres helped for better visualisation and relaxation of intra-pelvic structures, thus aiding in fracture reduction and stabilisation, and also avoiding injuries to the neurovascular structures.

Fig. 1: Surgical exposure showing A): Corona mortis identified and ligated B): Obturator nerve isolated and protected

Fig. 2: Transtrochanteric Schanz pin inserted into head of femur; A) Before lateral traction; B) After lateral traction

Fig. 3: Intrafocal instrumentation (Cobb’s elevator) to achieve fracture reduction
Fig. 4: A picador ball spike pushing the displaced quadrilateral plate

Fig. 5: Bone hook to pull the pelvic brim

Fig. 6: Schanz pin inserted into iliac crest (in this case, bent due to manipulation)

Fig. 7: Undercontoured reconstruction plate has been used to push the quadrilateral plate. Screw is inserted into the sciatic buttress

Fig. 8: Contouring the plate preoperatively using a cadaveric bone model

Post Op protocol
Oral feed was started once bowel sounds were heard and patient passed flatus. DVT prophylaxis was initiated using pharmacologic agents six hours after surgery. CT scan was taken to confirm the reduction as well as to rule out intra-articular screw placement. Follow up x-rays were taken two weeks, four weeks, six weeks and 12 weeks post operatively. Radiological assessment was done using Matta’s criteria, and clinical assessment was done using Merle d’ Aubigne scoring. Non-weight bearing mobilisation was started on second post-operative day and continued till 12 weeks.

Results
There were 16 patients with male female ratio of 13:3 in the age group of 19 years to 70 years (mean 42 years). The time
from injury to surgery ranged from 6 to 14 days (mean 9
days). The success of reduction techniques was assessed
using intra-operative C arm images as well as post-operative
x-rays. Matta’s radiographic reduction criteria showed
anatomical reduction in 10 cases, imperfect results in 4 cases
and poor results in 2 cases. Clinical assessment using Merle
d’ Aubigne scoring showed excellent results in 9 cases, good
results in 6 and fair results in 1 case. Follow up was done for
a maximum of six months (four to six months).

Discussion
Referred to by various names, the anterior intrapelvic
approach (also known as AIP, Stoppa, modified Stoppa,
extended Pfannenstiel, ilioanterior) aims to expose the medial
intrapelvic surface (including quadrilateral plate and sciatic
buttress) of the innominate bone for repair of acetabular and
pelvic ring injuries.17 This approach utilises preperitoneal/
retroperitoneal interval to expose the inner aspect of pelvis.
This approach provides access to pubic body, superior ramus,
pubic root, the ilium above and below the pectineal line, the
quadrilateral plate, the medial aspect of the posterior column,
the sciatic buttress and the anterior sacroiliac joint.15 For
access to the upper ilium and crest, a second incision
following the upper limb of the approach described by Smith
Peterson is used. An osteotomy of the anterior superior iliac
spine improves the access to anterior wall – pubic root region.
Sagi et al15 reported that 60% of their patients required
exposure of the lateral window. In our study, we have
performed a lateral window in all of our cases for placement
of instruments for reduction and for fixation purpose.

Several reduction techniques have been described in
literature.13,17,18 Reduction manoeuvres, however, often
remain the most time consuming and difficult part of the
procedure.13,19 Of these, lateral retraction of the femoral head
with a trochanteric traction pin is an important technique,
which facilitates reduction by eliminating deforming forces
on the medially displaced fracture. This manoeuvre also
relaxes tension on the obturator neurovascular bundle during
retraction.18 A pelvic collinear reduction clamp, standard
Matta pelvic reduction clamp can be used to reduce the
column fractures. A picador ball spike pusher is a very useful
instrument to reduce the anterior fracture. We have used ball
spike in most of our cases. The use of a bone hook in the
sciatic notch to bring forward the posterior column has been
reported in literature.17 We have used a bone hook introduced
through the lateral window to reduce anterior column fracture
in two of our cases. An undercontoured plate has been used by
Qureshi et al16,18 to reduce and fix fractures involving
quadrilateral surface. We have also used an undercontoured
reconstruction plate buttressing the quadrilateral surface with
screws inserted into the posterior column and posterior
surface of pubic ramus. In addition to the techniques
described above in the literature, we have used other
techniques like 1) Schanz screw in the iliac crest to
manipulate the posterior column, 2) Intrafocally placed
Hohman/ Cobbs elevator/ K wire to lever out the impacted
fragments, 3) Farabeuf forceps to apply compression on two
screws, one each on the either side of fracture 4) Manual
longitudinal traction of the lower limb.

The use of various reduction techniques helps in
achieving anatomic reduction quickly, thus decreasing the
duration of surgery as well as blood loss. Moreover, proper
placement of instruments helps in avoiding injury to the
neurovascular structures and also prevents intraarticular
placement of screw. According to Cole and Bolhofner13, in
fractures requiring both an anterior and posterior approach,
the anterior was always performed first to allow reduction of
significant posterior column, transverse, and medial wall
fractures from the inside, essentially restoring anatomicity of
the acetabulum prior to performing the posterior approach.
This leads to a minimisation of dissection when a subsequent
posterior approach is done.

The reduction quality translates itself to the radiograph
results as well as clinical results. According to Ha Yong Kim
et al,14 out of 22 patients treated by a Stoppa approach,
anatomic reduction was achieved in 17 cases, good and
excellent radiographic results were obtained in 18 cases, and
good and excellent clinical results were obtained in 16 cases.
The radiographic results were slightly better than the clinical
results. Marsh et al14,20 stated that the most important factor
that determines the clinical results was damage to the joint
cartilage, which would induce degenerative changes in the
joints even if anatomic reduction was achieved. Since
damage to articular cartilage is a non-modifiable factor, we
recommend that modifiable factors like anatomic reduction
should be given priority to achieve maximum possible
functional results. Various reduction techniques mentioned
above will help in achieving this goal.

Complications due to intraarticular screw placement can
be avoided by following the “safe zone” mapping of Guy et
al21 and the “safe and dangerous zone” mapping of Zang et
al.22 Complications like neurovascular injury can be avoided
by using appropriate instruments and safe retraction of the
pelvic structures. In our study we have not encountered any
major complications. Complications due to malreduction are
common if the fixation is done after three weeks of injury.
Cole and Bolhofner therefore advise that fixation be done
before three weeks to obtain good results with respect to
reduction and function.

Conclusion
In acetabular fractures requiring an anterior approach,
modified Stoppa approach provides better visualisation of
quadrilateral surface and sciatic buttress when compared to
the ilioinguinal approach. A lateral window markedly
improves the quality of reduction and fixation. The use of
appropriate reduction techniques helps in achieving good
reduction of anterior column, at the same time provides
opportunity to fix the posterior column from the anterior aspect using anterior to posterior column screws, obviating the need for a separate posterior approach. This study shows that the results of fixation through modified Stoppa approach can be improved by using various reduction techniques.

Limitation of our Study
We have a relatively small sample size and a short follow up. The functional results like post-traumatic arthritis could not be analysed in our study. Application of appropriate reduction techniques and adequate follow up by further studies may provide the comparison between good radiographic results and corresponding clinical results.

Conflict of interest: Nil

Acknowledgements: Nil

References

How to cite this article: Ramprasath DR, Chezain SV, Raajendiren IP. Modified Stoppa approach for acetabular fracture fixation – reduction techniques. Indian J Orthop Surg 2019;5(2):106-110.