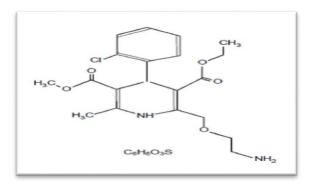
A RP-HPLC method for the simultaneous assay of amlodipine and hydrochlorthiazide in combined dosage form

M.Prasada Rao^{1,*}, M. Srikanth², K. Umamaheswari³

¹Professor, ^{2,3}Assistant Professor, Department of Pharmaceutical Analysis, M.A.M College of Pharmacy, Kesanupalli, Andhra Pradesh, India

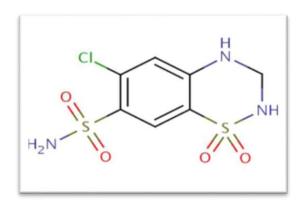
*Corresponding Author:

Email: prins2mam@gmail.com


Abstract

This is the present work which is a new method development and validation was carried out for the estimation of Amlodipine besylate and hydrochlorthiazide by RP-HPLC technique. The wavelength selection was made at 245 nm in various literature were having a maximum absorbance at around 240 to 250 nm. Hence the wavelength was selected at 245 nm for the detection of the compound. In this method development several trials had been carried out and reported. Leading this to the optimized chromatographic conditions for the estimation of Amlodipine besylate and hydro chlorthiazide pharmaceutical dosage form. Preliminary studies involved trying C_{18} , columns and several mobile phase compositions for the effective separation of these drugs by using symmetry C_{18} Hypersil-BDS column eluted with the mobile phase Degassed water and acetonitile with a flow rate of 1.0ml/ min and a detection wavelength of 245 nm with injection volume of 20 ml at ambient (25°C) temperature yielded the good results.

Keywords: Hydrochlorthiazide, RP-HPLC technique, C₁₈, Amlodipine besylate.


Introduction

Amlodipine is 1, 4-dihydropyridine calcium channel blocker which is a long-acting. Its primary activity is on vascular smooth muscle cells by stabilizing voltage-gated L-type calcium channels in their inactive conformation. Main mechanism is to inhibit the influx of the calcium into the smooth muscle cells and also prevents the calcium-dependent myocyte contraction and the vasoconstriction. The other mechanism for the drug's vasodilatory effects involves pH-dependent inhibition of calcium influx via inhibition of the smooth muscle carbonic anhydrase. Evidential proof has been obtained that the amlodipine also exerts inhibitory effects on voltage-gated N-type calcium channels. These are the channels which are located in the central nervous system which may be involved in nociceptive signaling and pain sensation. Amlodipine is used in treating the hypertension and chronic stable angina.

Amlodipine

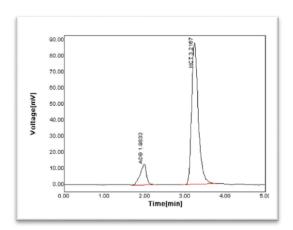
This is a thiazide diuretic which is often considered the prototypical member of this class. It helps in reducing the reabsorption of the electrolytes from the renal tubules. As a result of this there is an increased excretion of water and electrolytes, including sodium, potassium, chloride, and magnesium. It treats several disorders including edema, hypertension, diabetes insipidus, and hypoparathyroidism.

Hydrochlorthiazide

HPLC: This is the modern form of column chromatography which has been called as high performance, high pressure, and high-resolution and high-speed liquid chromatography. High-Performance Liquid Chromatography (HPLC) is a branch of column chromatography where the mobile phase is being forced through the column at high speed. In the year 1960's chromatographers started enhancing the polar nature of silanol group by chemically reacting silica with the organic silanes. The main aim was to make less polar or non-polar so that the polar solvents can be used to

separate the water-soluble polar compounds. As the ionic nature of the chemically modified silica is now reversed i.e. it is non-polar or the nature of the phase is reversed. The chromatographic segregation carried out with such silica is referred to as reversed- phase chromatography

Materials and Methods


Instruments: HPLC - Electronic balance (SARTORIOUS), WATERS Model NO.2690/5 series, Digital pH meter (POLOMAN), Compact System Consisting of Hypersil-C18 BDS column, Sonicator (FAST CLEAN).

Chemicals: Acetonitrile HPLC Grade, Purified water HPLC Grade.

Raw Material: Hydrochlorothiazide Working Standardsand Amlodipine besylate.

Preparation of Standard Solution: Weigh down 10mg's of Hydrochlorothiazide RSand Amlodipine besylate drugs and dissolved in 10ml of Mobile phase which is taken in two 10ml of volumetric flasks seperatelyand those aresonicated for a period 20 minutes to get 1000ppms and 1 ml was taken from each solution and diluted to 10 ml with the mobile phase.

Chromatogram of Standard

Graph 1

Inference: Obtained the chromatogram at RT's of 1.9min to Amlodipine besylate and 3.2min to Hydrochlorothiazide for standard.

Table 1

S.No.	Name of the peak	Retention time (min)
1	Amlodipine Besylate	1.9
2	Hydrochlorothiazide	3.2

Method Validation

System Suitability: Right after completing the method development, the validation of the current method has been performed in accordance to the USP requirements for assay determination (Category-I:

analytical methods for quantitation of active ingredients in finished pharmaceutical products) which include the accuracy, precision, selectivity, linearity and range, robustness and ruggedness.

Table 2: Data of System Suitability for Amlodipine

Desylate								
Injection	RT	Peak Area	USP Plate count	USP Tailing				
1	1.9665	143	9462	0.9577				
2	1.9834	142	9264	0.9786				
3	1.9667	141	9765	0.9355				
4	1.9663	141	9314	0.9888				
5	1.9667	142	9546	0.9745				
Mean	1.9655	142.4721	9470.2	0.9670				
SD	0.0075	0.8365						
% RSD	0.38	0.59						

Table 3: Data of System Suitability for Hydrochlorothiazide

Injection	RT	Peak	USP Plate	USP
		Area	count	Tailing
1	3.2334	1002	12456	0.7533
2	3.2000	999	12765	0.7299
3	3.2009	998	12764	0.7625
4	3.2167	995	12348	0.7555
5	3.2000	997	12543	0.7533
Mean	3.2102	998.6805	12575.2	0.7509'
SD	0.0147	2.6214		
% RSD	0.46	0.26		

Acceptance criteria: %RSD values are within the limit **Precision:** This is the analytical method which was determined by assaying the sufficient number of sample and relative standard deviation was calculated.

System precision:

Table 4: Data of Repeatability (System precision)

for Amlodinine besylate

ioi Amouipine besylate						
	Injection	Peak Areas of Amlodipine besylate	%Assay			
	1	142	99.92			
Concentration	2	140	98.58			
40ррт	3	142	99.44			
	4	141	99.33			
	5	141	98.98			
Statistical	Mean	141.3386	99.25			
	SD	1.0961	0.5033			
Analysis	% RSD	0.77	0.51			

Table 5: Data of Repeatability (System precision) for Hydrochlorothiazide

	Injection	Injection Peak Areas of Hydrochlorothiazide		
	1	998	100.06	
Concentration	2	999	100.17	
40ррт	3	997	99.96	
	4	999	100.21	
	5	999	100.20	
g	Mean	999.0045	100.12	
Statistical Analysis	SD	1.075	0.1075	
	% RSD	0.11	0.11	

Repeatability

Table 6: Data of Repeatability (Method precision) for Hydrochlorothiazide

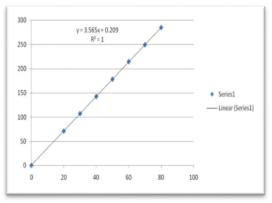
	Injection	Peak Areas of Hydrochlorothiazide	%Assay
	1	998	100.04
Concentration	2	998	100.02
40ppm	3	997	99.96
	4	999	100.20
	5	997	99.96
	6	999	100.13
Statistical	Mean	998.3124	100.05
	SD	0.951	0.096
Analysis	% RSD	0.095	0.096

Accuracy (Recovery)

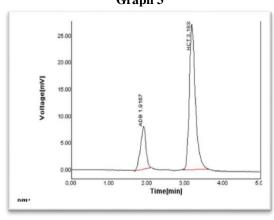
The accuracy is the measurement of an analytical method to the closeness of that results obtained by that method to the true value. This accuracy may often be expressed as percent recovery by the assay of known added amount of analytic.

Table 7: Data of Accuracy for Amlodipine besylate

Concentration % of spiked level	Amount added (ppm)	Amount found (ppm)	% Recovery		al Analysis Recovery
50% Injection 1	20	19.96	99.80	MEAN	99.95
50% Injection 2	20	19.83	99.15		
50% Injection 3	20	20.18	100.90	%RSD	0.89
100 % Injection 1	40	39.76	99.40	MEAN	99.84
100 % Injection 2	40	39.95	99.87		
100% Injection 3	40	40.10	100.25	%RSD	0.43
150% Injection 1	60	59.65	99.42	MEAN	99.64


Table 8: Data of Accuracy for Hydrochlorothiazide

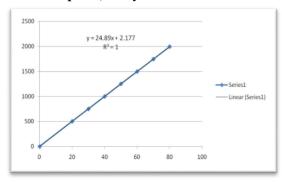
Concentration % of spiked level	Amount added (ppm)	Amount found (ppm)	% Recovery	Statistical Analysis of % Recovery	
50% Injection 1	20	19.97	99.85	MEAN	99.88
50% Injection 2	20	19.96	99.80	%RSD	0.10
50% Injection 3	20	20.00	100.00		
100 % Injection 1	40	40.03	100.07	MEAN	100.07
100 % Injection 2	40	39.99	99.97		
100% Injection 3	40	40.05	100.17	%RSD	0.10
150% Injection 1	60	60.08	100.13	MEAN	100.07
Injection 2	60	60.03	100.05		
150% Injection 3	60	60.02	100.03	%RSD	0.053


Linearity: Linearity of the analytical method for assay is by injecting the various concentrations of

standard preparations prepared. The linearity between the peak-area and the concentration was examined.

Graph 2: Linearity Plot (Concentration Vs Response) of Amlodipine

Graph 3



Acceptance Criteria:

Correlation Coefficient should be not less than

0.9990. % of y- Intercept should be ± 2.0 . % of RSD for level 1 and Level 6 should be not more than 2.0%.

Graph 4: Linearity Plot (Concentration Vs Response) of Hydrochlorothiazide

Ruggedness:

Table 9

S.No	Peak area	Assay % of Amlodipine besylate
1	142	99.92
2	140	98.63
3	142	99.97
4	144	101.42
5	143	100.68
6	142	100.08
Mean	142.9770	100.12
%RSD	0.924	0.92

Table 10

S. No.	Peak area	Assay % of
		Hydrochlorothiazide
1	998	100.06
2	997	100.01
3	999	100.13
4	997	100.00
5	999	100.17
6	998	100.10
Mean	998.5715	100.08
%RSD	0.068	0.067

Table 11: Data for Effect of variation in flow rate (Amlodipine besylate)

Flow	Std Area	Tailing	Flow	Std Area	Tailing	Flow	Std Area	Tailing
0.8ml		factor	1.0ml		factor	1.2ml		factor
	201.2458	1.0654		142.9203	0.9745		119.5373	0.8677
	202.2735	1.0666		141.7788	0.9656		121.6676	0.8656
	198.7938	1.0659		143.6957	0.9824		121.8238	0.8555
	203.1705	1.0432		139.4545	0.9752		120.6342	0.8746
	202.9369	1.0236		143.7711	0.9751		119.5126	0.8656
Avg	201.6841	1.0529	Avg	142.3241	0.9746	Avg	120.6351	0.8658
SD	1.78	0.019	SD	1.793	0.006	SD	1.112	0.007
%RSD	0.88	1.80	%RSD	1.26	0.61	%RSD	0.92	0.81

Table 12: Data for Effect of variation in flow rate (Hydrochlorothiazide)

Flow	Std Area	Tailing	Flow	Std Area	Tailing	Flow	Std Area	Tailing
0.8 ml		factor	1.0 ml		factor	1.2 ml		factor
	1324.5469	0.8295		998.7905	0.7612		831.9437	0.6555
	1322.4299	0.8133		999.5291	0.7522		830.7733	0.6598
	1323.6787	0.8345		998.3930	0.7632		829.4346	0.6494
	1323.6045	0.8267		997.4566	0.7756		830.4743	0.6654
	1322.1327	0.8266		999.0457	0.7662		830.8384	0.6498
Avg	1323.2785	0.8261	Avg	998.6430	0.7637	Avg	830.6929	0.6560
SD	0.988	0.0078	SD	0.781	0.0084	SD	0.898	0.0068
%RSD	0.074	0.944	%RSD	0.078	1.099	%RSD	0.108	1.036

Summary and Conclusion

This is analytical method which was developed by studying various parameters. First of all, maximum absorbance was found to be at 245nm and the peaks purity was good. Injection volume was selected to be 20ml which gave a good peak area. The Hypersil Ci8 is the column used for study. Optimum temperature was found to be suitable for the nature of drug solution. The flow rate was fixed at 1 ml/min because of good peak area and retention time. The various ratios of mobile phase were being studied, mobile phase with ratio of 50:50, Water: Acetonitrile was fixed due to good resolution and the symmetrical peaks. This is the reason for selection of this mobile phase for the present study. Acetonitrile was selected because of maximum extraction sonication time was fixed to be 10min at

which all the drug particles were completely soluble and showed good recovery. Run time was selected to be minimum because analyze gave peak around minimum and also to reduce the total run time.

The recovery was found to be 98.0-101.50 was linear and precise over the same range. Both system and method precision was found to be accurate and well vary within the range. Detection limit was found to be 0.77 for Amlodipine and 0.35 for HCTZ. This analytical method was found out to be linear over the range of 20-80ppm of the target concentration for both of the drugs. The analytical method passed both robustness and ruggedness tests. On both cases, relative standard deviation were satisfyingly good enough.

References

- D. N. Voraand A. A. Kadav. Development and Validation of a Simultaneous HPLC Method for Estimation of BisoprololFumarate and Amlodipine Besylate from Tablets. Indian J Pharm Sci. 2008 Jul-Aug;70(4):542-546. doi: 10.4103/0250-474X.44616.
- P. S. Jain, M. K. Patel, S. B. Bari, and S. J. Surana. Development and Validation of HPTLC Method for Simultaneous Determination of Amlodipine Besylate and Metoprolol Succinate in Bulk and Tablets. Indian J Pharm Sci. 2012 Mar-Apr;74(2):152-156.doi: 10.4103/0250-474X.103849.
- K. Safeer, B. Anbarasi, N. Senthil Kumar. Analytical Method Development and Validation of Amlodipine and Hydrochlorothiazide in combined dosage form by RP-HPLC. International Journal of Chem Tech Research. CODEN (USA):IJCRGG ISSN:0974-4290. Vol.2, No.1, pp 21-25, Jan-Mar 2010.
- Bokya, G. Tsvetkova, Lily P. Peikova. Development and validation of RP-HPLC method for simultaneous determination of Amlodipine Besylate and Hydrochlorothiazide in pharmaceutical dosage form. Journal of Chemical and Pharmaceutical Research, 2013, 5(1):271-275.
- Gaurav Patel, Sanjay Patel, DhameshPrajapiti, Rajendra Mehta. RP-HPLC Method for Simultaneous Estimation of Amlodipine Besylate and Hydrochlorothiazide in Combined Dosage Forms. Stanford journal of pharmaceutical sciences. Vol 3, no 1 (2010):49-53.
- N. Delhiraj, S. Anbazhagan, Delhiraj. validatedchromatographical methods for the simultaneous estimation of antihypertensive drugs in pharmaceutical dosage forms. Int J Pharm 2013;3(1):103-107 ISSN 2249-1848
- Nilesh Jain, Ruchi Jain, Jitendra Banweer, Deepak Kumar Jain. Development and validation of a rapid rp-hplc method for the determination of a mlodipinebesylateandolmesartanmedoxomil in their combined tabletformulation. 08 Jan 2010.
- R.S.Ch.Phani, K.R.S. Prasad, usenireddymallu. High resolution rp-hplc method for the determination of hypertensive drug products. Int J Pharm Bio Sci 2013 Jan; 4(1): (P)440 – 454.
- Lakshmi Narasimham Y.S.*, Barhate V.D. Development and validation of stability indicating UPLC method for the simultaneous determination of beta-blockers and diuretic drugs in pharmaceutical dosage forms. J. Chem. Metrol. 4:1 (2010) 1-20.
- Vidhya K. Bhusari, Sunil R. Dhaneshwar. Validated HPTLC Method for Simultaneous Estimation of Atenolol, Hydrochlorothiazide and Amlodipine Besylate in Bulk Drug and Formulation. International Journal of Analytical and Bioanalytical Chemistry.05 october 2011.
- 11. CVN. Prasad, Ch. SanthoshKumari and SreeRamulu j. simultaneous determination of telmisartan, amlodipine besylate and hydrochlorothiazide in a combined poly pill dosage form by stability-indicating high performance liquid chromatography. international journal of research in pharmacy and chemistry 2011, 1(3) ISSN:2231
 2781.
- S. T. Kumbhar*, G. K. Chougule, V. S. Tegeli, G. B. Gajeli, Y. S. Thorat, U. S. Shivsharan. A Validated HPTLC Method for Simultaneous Quantification of Nebivolol and Hydrochlorothiazide in Bulk and Tablet Formulation. International Journal of Pharmaceutical Sciences and Drug Research 2011;3(1):62-66.
- 13. M. M. Deshpande*, M P. Mahajan and S. D. Sawant. Simultaneous estimation of valsartan and

- hydrochlorothiazide in fixed dose combination in uv spectrophotometry. IJPSR, 2012;Vol. 3(1):236-240.
- 14. RB Kakde, VH Kotak, AG Barsagade, NK Chaudhary and DL Kale. Spectrophotometric Method for Simultaneous Estimation of Amlodipine Besylate and BisoprololFumarate in Pharmaceutical Preparations. Research J. Pharm. and Tech. 1(4):Oct.-Dec. 2008,
- 15. nileshjain, ruchijain, jitendrabanweer, deepakkumarjain. Development and validation of a rapid rphplc method for the determination of amlodipine besylate and olmesartanmedoxomil in their combined tablet formulation. International Journal of Current Pharmaceutical Research Vol 2, Issue 2, 2010.
- Mohammad Younus, T. Karnaker Reddy, Y. Ravindra Reddy, Md. FasiuddinArif. RP-HPLC Method Development and Validation for Simultaneous Estimation of Amlodipine besylate, Valsartan and Hydrochlorothiazide in Tablet Dosage Form. Journal of Pharmacy Research 2010, 3(11),2647-2650.
- Delhiraj N and Anbazhagan S. validated chromatographical methods for the simultaneous estimation of antihypertensive drugs in pharmaceutical dosage forms. Int J Pharm 2013;3(1):103-107.
- 18. RavisankarPanchumarthy, Devala Rao Garikapati. An Improved Rapid HPLC Method for the Separation of Five Anti-Hypertensive Agents Using C18 Column: Application to Hydrochlorothiazide Determination in Bulk and Tablet Dosageform. IOSR Journal of Pharmacy. Volume 3, Issue 5 (June 2013), Pp 07-19.
- Namandoshi, Avanisheth, C N Patel. Validated reverse phase high performance liquid chromatographic method for simultaneous estimation of olmesartanmedoxomil, hydrochlorothiazide and amlodipine besylate in newly designed pharmaceutical dosage form. International research journal of pharmacy.2012, 3(11).
- 20. BheruS.Malviya*, Prince Shivhare, PramodHinnariya and Vidhi Jain. Development and Validation of UPLC Method for Simultaneous Determination of Irbesartan, Hydrochlorothiazide, Amlodipine Besylate and Atorvastatin. International journal of drug discovery and herbal research (ijddhr) 2(4):Oct.-Dec.:(2012),481-486.