Morphometric measurement of adductor longus and its clinical application: A cadaveric study

Navneet Kour¹, Vanita Gupta²*, Gaurav Agnihotri³, Shalika Sharma⁴, Vikrant Singh⁵

¹²³Assistant Professor, ²³⁴Associate Professor, ¹²³⁴Dept. of Anatomy, Acharya Shree Chander College of Medical Sciences, Jammu, Jammu & Kashmir, India ⁵Lecturer, Dept. of Gastrointestinal Surgery, Government Medical College, Jammu, Jammu & Kashmir, India

*Corresponding Author:
Email: doctorvanita@yahoo.co.in

Received: 17th January, 2018 Accepted: 15th March, 2018

Abstract
Objectives: A profound knowledge of the anatomical organization of adductor muscle compartment is necessary to understand their functions, and to assist in the development of accurate clinical and biomechanical models. This study aims at providing appropriate morphometric measurements of adductor longus muscle.

Materials and Methods: The present study was conducted on 50 lower limbs. All limbs were fully dissected and measurements were taken with help of a steel tape.

Results: We found Adductor longus muscle in all the 50 dissected lower limbs (100%). The range of length and width of proximal aponeurosis varied from 4.1-6.8cm and 0.8-2.5cm respectively. The range of length of fleshy part (muscular belly) varied from 14.4 – 20.7cm. The range of length and width of distal aponeurosis varied from 9.8 – 13.9cm and 2.1 – 4.8cm respectively.

Conclusion: Our results would aid educational anatomy dissections, surgical interventions and help in management of many ailments.

Keywords: Cadaver, Adductor longus, Morphometry.

Introduction
A profound knowledge of the anatomical organization of adductor muscle compartment is necessary to understand their functions, and to assist in the development of accurate clinical and biomechanical models.¹

The adductors (adductor longus, adductor brevis and adductor magnus) originate proximally from the inferior aspect of the body and ramus of the pubis all three muscles insert distally on the femur, from a point beginning on the posterior aspect of the femur proximal to the linea aspera, along the linea aspera, to the adductor tubercle.²

The adductor longus is long triangular and relatively thin muscle. Its fibres are narrow proximally and straggle more distally. The anterior branch of the obturator nerve innervates the muscle. It is involved in adduction, external rotation, and anteflexion of the hip joint.³ Morphometry of muscles of lower limb has been attempted in the past.⁴⁻⁸ Muscle morphometry has helped researchers to improve understanding of muscle anatomy and function, in addition to studying the mechanics of human movement. For example, a direct relationship between a muscle's cross-sectional area (CSA) and its ability to generate force has been a fundamental hypothesis for numerous biomechanical studies.⁹

Elucidation of muscle architecture may provide useful information for selection of muscles used in tendon transfers. To substitute a lost muscle function, the distal tendons of muscles often are transferred from one position to another.¹⁰,¹¹ Muscle architecture has been studied regarding weight, number and size of muscle fibres.¹²

Reviewing the literature we found an extreme paucity of data pertaining to the details mentioning anatomical characteristics of adductor longus muscle taking into account the length, width of tendon/aponeurosis of origin, the length of its fleshy part (muscle belly), the length, and width of the tendon/aponeurosis of insertion. The present work attempts to provide a detailed morphometric profile of the adductor longus muscle.

Materials and Methods
Fifty lower limbs from 25 phenol embalmed adult cadavers were dissected in the Department of Anatomy. Out the fifty, forty –six were male limbs (23 cadavers) and four were female limbs (two cadavers). The cadavers were labelled from 1 to 25 with suffix R (Right) or L (Left). The adductor longus muscle was exposed and its origin and insertion were traced on the hip bone and femur as per the dissection steps provided by Cunningham’s Manual of Practical Anatomy (Romanes, 1986). Each measurement was taken using a standard measuring tape.

The origin of muscle from the front of body of the pubis immediately below the pubic crest to the start of fleshy part was traced. The length of proximal aponeurosis/tendon was considered from origin of the
tendon upto the point where fleshy muscle fibres commenced (Fig. 1). The width of proximal aponeurosis of muscle on the body of pubis was also measured (Fig. 2). The muscle was then divided transversely near its origin. The proximal part of muscle was turned towards the distal part of femur. The aponeurotic insertion of the muscle onto the linea aspera of the femur was finally traced. The length of distal aponeurosis on the linea aspera was measured from the point where fleshy fibres ceased (Fig. 3). The width of distal aponeurosis was measured transversely from the linea aspera (Fig. 4). The length of the fleshy part of the muscle was also measured (Fig. 5).

Means and standard deviations of these measurements were calculated. All statistical analysis was done using SPSS.
Table 1: Mean values (in cms) and standard deviation of various parameters of Adductor Longus (50 limbs)

<table>
<thead>
<tr>
<th>S. N.</th>
<th>Parameters</th>
<th>Mean values</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fleshy part</td>
<td>17.19</td>
<td>1.734788</td>
</tr>
<tr>
<td>2</td>
<td>Length of the proximal aponeurosis</td>
<td>5.246</td>
<td>0.715773</td>
</tr>
<tr>
<td>3</td>
<td>Width of the proximal aponeurosis</td>
<td>1.354</td>
<td>0.356405</td>
</tr>
<tr>
<td>4</td>
<td>Length of the distal aponeurosis</td>
<td>12.582</td>
<td>1.221022</td>
</tr>
<tr>
<td>5</td>
<td>Width of the distal aponeurosis</td>
<td>3.018</td>
<td>0.538209</td>
</tr>
</tbody>
</table>

Table 2: Mean values and standard deviation of various parameters of Adductor Longus in males (46 limbs)

<table>
<thead>
<tr>
<th>S. N.</th>
<th>Parameters</th>
<th>Mean values</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fleshy part length</td>
<td>17.3</td>
<td>1.726782</td>
</tr>
<tr>
<td>2</td>
<td>Length of the distal aponeurosis</td>
<td>5.308696</td>
<td>0.692444</td>
</tr>
<tr>
<td>3</td>
<td>Width of the distal aponeurosis</td>
<td>1.373913</td>
<td>0.362359</td>
</tr>
<tr>
<td>4</td>
<td>Length of the proximal aponeurosis</td>
<td>12.66522</td>
<td>1.137095</td>
</tr>
<tr>
<td>5</td>
<td>Width of the proximal aponeurosis</td>
<td>3.030435</td>
<td>0.55812</td>
</tr>
</tbody>
</table>

Table 3: Mean values and standard deviation of various parameters of Adductor Longus in females (4 limbs)

<table>
<thead>
<tr>
<th>S. N.</th>
<th>Parameters</th>
<th>Mean values</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fleshy part</td>
<td>15.925</td>
<td>1.452297</td>
</tr>
<tr>
<td>2</td>
<td>Length of the distal aponeurosis</td>
<td>4.525</td>
<td>0.65</td>
</tr>
<tr>
<td>3</td>
<td>Width of the distal aponeurosis</td>
<td>1.125</td>
<td>0.170783</td>
</tr>
<tr>
<td>4</td>
<td>Length of the proximal aponeurosis</td>
<td>11.625</td>
<td>1.905037</td>
</tr>
<tr>
<td>5</td>
<td>Width of the proximal aponeurosis</td>
<td>2.875</td>
<td>0.170783</td>
</tr>
</tbody>
</table>

Observations

We found Adductor longus muscle in all the 50 dissected lower limbs (100%). In all the 50 limbs the origin and the insertion of the muscle was according to the typical anatomical pattern. All these were recorded as shown in table 1. The range of length of proximal aponeurosis varied from 4.1 - 6.8cm and the range of width of proximal aponeurosis varied from 0.8 - 2.5cm. The range of length of fleshy part (muscular belly) varied from 14.4 – 20.7cm. The range of length of distal aponeurosis varied from 9.8 – 13.9cm and the range of width of distal aponeurosis varied from 2.1 – 4.8cm. The results of the mean values in both males and females are depicted in tables 2-4.

Discussion

Human bipedalism is an exclusive character with which we are able to stand and walk with trunk upright and knees nearly straight. The adductor muscles of medial compartment of thigh have an important role in balancing and stabilizing the trunk on the lower limb during walking. These muscles adduct the femur and counteract the rotation of the pelvis, especially during the double support phase of gait, when the anterior lower extremity is flexed and the posterior lower extremity is extended at hip. We could come across very few studies wherein research work has been done regarding morphometric analysis of adductor muscles of the thigh. The observations in these studies were based on non invasive techniques such as MRI and CT. Reviewing the literature we found that very few studies have been conducted on cadavers giving details of morphometry of these muscles. This gave us an impetus to concentrate our research on cadavers restricting to measurements pertaining to Adductor Longus.

After having dissected the region carefully, the morphometric and statistical analysis of the muscle was done. It was observed that both the origin and the insertion of the muscle was not exactly tendinous but the fibres formed an aponeurosis. The mean lengths of the fleshy part (muscle belly) was 17.3cms and the distal aponeurotic part (contractile part) was 5.3 cms. Not much could be assessed from the findings of female patients due to the paucity of female cadavers. These observations of ours are different from what has been mentioned in standard textbooks of anatomy. Adductor longus injuries are serious and can be missed many a times. The muscle is known to tear from its insertion. Adductor longus tendon tear and strains have been found to occur in athletes.
total ruptures of the adductor longus muscle are rare.24–
29

Insertional tendinopathy of the adductor longus is a
common and problematic condition in elite athletes and
may lead to rupture.22 Treatment of these would include
transfer of tendon wherein a profound knowledge of
muscle and tendon length is important.

Tendon transfer and tendon repair surgeries are
being attempted by surgeons.9,10 It is here that
Aponeurotic attachments especially the insertions can
pose difficulties. Thus our detailed accounts of
measurements can prove to be useful.

Athletes diagnosed with rupture of adductor longus
tendon, acute repair with suture anchors is the treatment
of choice. Gracilis and adductor longus are located in
the same region of the human thigh, and the two are
supplied by the same vascular source and nerve. Both
are long strap muscles with good excursion. Overall,
these characteristics make the two muscles candidates
for the development of surgical procedures for double
functioning free muscle transplantation (DDFMT) based
on single vascular anastomosis.23 A detailed
morphometric analysis would certainly be of help to the
surgeons doing such work.

Sport surgeons resort to adductor release and
tenotomy only if other rehabilitative procedures fail to
cure the patient of pain and debility.20

Conclusion

Findings of the present study shall assist in
understanding the muscle functions. Also as
morphological features are in direct correlation with
their function and this data might prove useful in
further research in the field of myology and kinesiology. The knowledge of such morphometric
analysis may be helpful to general surgeons and
orthopaedic surgeons in the management of adductor
longus injuries, tendon transfers and muscle
transposition.

References

1. Singh H, Kour R and Gupta N. “Morphometric Study
 of Gracilis Muscle and its Role in Clinical Reconstruction”.
2. Standring S, Grays Anatomy: The Anatomical Basis of
 Clinical Practice. 39th ed. Edinburgh: Churchill
3. Kimmenade VD, Bergen V, DeurenV and Verhagen R.
 “A Rare Case of Adductor Longus Muscle.” Case
 Reports in Orthopedics (2015), Article ID 840540, 4
4. Friedrich JA, Brand RA. “Technical Note: muscle fibre
 architecture in the human lower limb”. Journal of
5. Wickiewicz TL, Roy RR, Powel PL, Edgerton VR.
 “Muscle Architecture of human lower limb.” Clinical
7. Kataoka J. “Comparative studies on muscle structure of
 triceps surae and m. plantaris in man and monkey.” J
8. Oohara K. “Myofibrous organization of human
 hamstring muscles.” J Showa Med Assoc (1991) 51,151-
 8.
9. Haxton HA. “Absolute muscle force in the ankle flexors
11. Riordan DC. “Tendon transfers for median, ulnar, or
 lower limb muscles: An Evaluation of Weight and fibre
 size.” Okiijimas Folia Anat. J Japan. (August 2003) 80, 2-
 musculature of the leg as seen in hundred Indian
14. Tuite DJ, Finegan PJ, Saliaris AP, Renstrom PA, Donne
 B, O’Brien M. “Anatomy of the proximal
 musculotendinous junction of the adductor longus
15. Scott H, Engstrom CM and Loebege. “Morphometry of
 human thigh muscles. Determination of fascicle
 architecture by magnetic resonance imaging.” Journal of
16. Engstrom CM,Loeh GE, Reidi JG, Forrest WJ and
 Avruch L. “Morphometry of the human thigh muscles. A
 comparison between anatomical sections and computer
 tomographic and magnetic resonance images.” Journal of
17. Rugg SG, Gregor RJ, Mandelbaum BR, Chiu L. “In vivo
 moment arm calculations at the ankle using magnetic
 resonance imaging (MRI).” Journal of
 muscle moment arms from MRI and from tendon travel.”
19. Maughan RJ, Watson JS, Weir J. Strength and cross-
 sectional area of human skeletal muscle. Journal of
20. Ito J. “Morphologica analysis of human lower extremity
 based on relative muscle weight” Okajimas Folia Anat
21. Banks DBA, MacLennan I, Banks AJ. “Adductor longus
 ruptures in elite sportsmen—pitsfalls of surgical repair: a
 report of two cases, case report”. BMJ Case Reports 24
 longus rupture in professional football players: acute
 repair with suture anchors.” A report of two cases. Am J
23. Peterson L and Stener B. “Old total rupture of the
 adductor longus muscle. A report of seven cases. Acta
 avulsion of the adductor longus muscle: acute repair with
 three fiberwire suture anchors.” Archives of Orthopaedic
 traumatic rupture of the adductor longus muscle. Indian
26. Schlegel TF, Busnell BD, Godfrey J, and Boublik M.
 “Success of nonoperative management of adductor longus

