Antibiotic susceptibility pattern among clinical isolates of *Staphylococcus aureus* with special reference to vancomycin

Usha M. G1, Shwetha D C2,*

1Professor, 2Assistant Professor, Dept. of Microbiology, 1JJM Medical College, Davangere, Karnataka, 2Adichunchanagiri Institute of Medical Sciences B.G. Nagara, Karnataka, India

Corresponding Author: Shwetha D C
Email: shwetha.dasarahalli@gmail.com

Received: 1st August, 2018 Accepted: 26th September, 2018

Abstract

Introduction: *Staphylococcus* is a major pathogen of community and hospital acquired infections. Vancomycin is used in MRSA caused infections. Emergence of VISA and VRSA has been of great concern in clinical aspects.

Materials and Methods: All clinical samples were processed in the laboratory according to standard procedure. Inoculated plates were incubated at 37°C for 24-48 hours. Only *S. aureus* isolates were included in the present study. Antibiotic susceptibility testing was done by Kirby-Bauer disc diffusion method using a panel of drugs. Cefoxitin disc was used to identify methicillin resistance. The MIC of vancomycin for MRSA isolates was carried out by Agar dilution method and E-test according to standard methods. Heteroresistance to vancomycin was detected by using BHI screen agar.

Results: 190 *S. aureus* were isolated from various clinical samples. Most of the isolates were resistant to amoxycilv (96.2%) followed by ciprofloxacin (84.2%), erythromycin (33.2%), Clindamycin (31.2%), Cotrimoxazole (14.6%), Teicoplanin (4.2%), Mupirocin (2.1%) and none of the isolates were resistant to linezolid. Out of 190 *S. aureus* isolates, 97 (51.1%) were identified as MRSA. None of the isolates were resistant to vancomycin by agar dilution method and E-test method. Four out of 97 (4.1%) MRSA isolates showed intermediate susceptibility to vancomycin. Among the isolates with MIC of 2µg/ml, 5 (19.2%) showed heteroresistance to vancomycin by BHI screen agar method.

Conclusion: Rapid identification of patients harboring VRSA, VISA or hVISA and adherence to infection control protocols are very important in controlling the dissemination of these pathogens.

Keywords: MRSA, VISA, VRSA, Heterointermediate resistant Staphylococcus aureus (hVISA), Agar dilution method, E-test.

Introduction

Staphylococcus aureus (*S. aureus*) is an opportunist pathogen and the most common cause of nosocomial infections [Severt DM et al., 2008]. Infections caused by *S. aureus* are difficult to treat as they have the ability to destroy neutrophils and also show antibiotic resistance [Ng ST et al., 2011]. During 1970’s, resistance to new semisynthetic penicillinase resistant antimicrobial agents (methicillin, oxacillin, nafcillin) developed [B Michael et al., 1996]. MRSA has been considered as a major nosocomial pathogen in health care facilities, but in the last decade it has also been observed to be an emerging pathogen in community acquired infections [Seralathan SE et al., 2017]. This led to the increased reliance on vancomycin for the treatment of Methicillin resistant *S. aureus* (MRSA) infections [Hageman JC et al., 2006]. In 1997, the first clinical isolate of *S. aureus* with reduced susceptibility to vancomycin was reported from Japan [Tenover FC et al., 2001 & Tenover FC et al., 1998]. Subsequently, Vancomycin intermediate *S. aureus* (VISA) were reported in the United States and around the world [Tenover FC et al., 2007]. In June 2002, a Vancomycin resistant *S. aureus* (VRSA) was identified [Chang S et al., 2003].

There is an increasing number of strains of *S. aureus* showing heterointermediate resistance to vancomycin (hVISA). hVISA strains are defined as strains of *S. aureus* that contain subpopulation of vancomycin intermediate daughter cells [Song JH et al., 2004]. Hence, the present study was done to determine antibiotic susceptibility, possible presence of VISA and VRSA and also the presence of hVISA strains among vancomycin susceptible strains of *S. aureus*.

Materials and Methods

The present study was done after obtaining the institutional ethical committee clearance.

All clinical samples were processed in the laboratory according to standard procedure (samples were inoculated on blood agar and MacConkey agar except urine sample, which was inoculated on CLED medium).

Inoculated plates were incubated at 37°C for 24-48 hours aerobically. Identification of isolate as *S. aureus* was done according to standard methods [Baird D et al., 1996] and only *S. aureus* isolates were included in the present study.

One hundred and ninety *S. aureus* were isolated from various clinical samples like pus, sputum, blood, urine, ear swab, pleural fluid, CSF, nasal swab and suction tip etc.

Antibiotic susceptibility testing was done by using Muller-Hinton agar by Kirby-Bauer disc diffusion method using a panel of drugs like Amoxycilv (30µg), ciprofloxacin (5µg), erythromycin (15µg), Clindamycin.
(2µg), Cotrimoxazole (25µg), Teicoplanin (30µg), Mupirocin (5µg), Linezolid (30µg). Cefoxitin disc (30µg) was used to identify methicillin resistance. S. aureus ATCC 25923 was used as a control strain.

The MIC of vancomycin for MRSA isolates was carried out by agar dilution method and E-test according to the standard methods.

Agar Dilution Method: Gradient plates of MHA plates were prepared with vancomycin (0.5-32µg/ml), 0.5 MacFarland matched culture suspension was 1 in 100 diluted with sterile saline and about 10µl was spot inoculated. Plates were incubated at 35°C for 24 hours. Lowest concentration of vancomycin that inhibited the visible growth of the strain was taken as MIC for that particular isolate.

E-test: E-test was done according to manufacturer’s instructions. 0.5 MacFarland matched inoculum was swabbed on Muller-Hinton agar and E-stripe was placed. Plates were incubated at 35°C for 24 hours. Vancomycin susceptible S. aureus ATCC 29213 was used as a control.

Isolate with MIC of 2µg/ml were considered for heteroresistance detection. Heteroresistance to vancomycin was detected by using BHI screen agar.

BHI Screen Agar Plates: BHI screen agar was prepared in-house by adding 4µg/ml of vancomycin and 16g/l pancreatic digest of casein. Four 10µl droplets from 0.5 MacFarland suspension were dropped by a pipette onto the BHI screen agar plates, allowed to dry for 5 min and incubated at 35°C. Plates were examined at 24 hours and 48 hours. An isolate was considered hVISA if at least one droplet had two or more colonies [Satola SW et al., 2011].

Results

190 S. aureus were isolated from various clinical samples like pus (126), blood (16), sputum (12), urine (12), nasal swab (08), suction tip (05), ear swab (03), endotracheal tube (03), bronchoalveolar lavage (02), pleural fluid (02) and CSF (01) (Table 1).

Most of the isolates were resistant to amoxyclav (96.2%) followed by ciprofloxacin (84.2%), erythromycin (33.2%), Clindamycin (31.2%), Cotrimoxazole (14.6%), Teicoplanin (4.2%), Mupirocin (2.1%) and none of the isolates was resistant to Linezolid (Table 2).

Out of 190 S. aureus isolates, 97 (51.1%) were identified as MRSA. None of the isolates were resistant to vancomycin by agar dilution method and E-test method. Four out of 97 (4.1%) MRSA isolates showed intermediate susceptibility to vancomycin by both agar dilution method and E-test.

Among the isolates with MIC of 2µg/ml, 5 (19.2%) showed heteroresistance to vancomycin by BHI screen agar method.

Table 1: Isolation of S. aureus from various clinical samples

<table>
<thead>
<tr>
<th>Sample</th>
<th>Number of S. aureus isolates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pus</td>
<td>126</td>
</tr>
<tr>
<td>Blood</td>
<td>16</td>
</tr>
<tr>
<td>Sputum</td>
<td>12</td>
</tr>
<tr>
<td>Urine</td>
<td>12</td>
</tr>
<tr>
<td>Nasal swab</td>
<td>08</td>
</tr>
<tr>
<td>Suction tip</td>
<td>05</td>
</tr>
<tr>
<td>Ear swab</td>
<td>03</td>
</tr>
<tr>
<td>Endotracheal tube</td>
<td>03</td>
</tr>
<tr>
<td>Pleural fluid</td>
<td>02</td>
</tr>
<tr>
<td>Bronchoalveolar lavage</td>
<td>02</td>
</tr>
<tr>
<td>Cerebrospinal fluid</td>
<td>01</td>
</tr>
<tr>
<td>Total</td>
<td>190</td>
</tr>
</tbody>
</table>

Totally 190 isolates of S. aureus from different samples were included. Samples from which bacteria other than S. aureus isolated were not included in the study.

Table 2: Antibiotic susceptibility pattern of S. aureus isolates

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Number of resistant strains Out of 190</th>
<th>Percentage of resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amoxyclav</td>
<td>185</td>
<td>96.2</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>162</td>
<td>84.2</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>64</td>
<td>33.2</td>
</tr>
<tr>
<td>Clindamycin</td>
<td>60</td>
<td>31.2</td>
</tr>
<tr>
<td>Co-trimoxazole</td>
<td>28</td>
<td>14.6</td>
</tr>
<tr>
<td>Teicoplanin</td>
<td>08</td>
<td>04.2</td>
</tr>
<tr>
<td>Mupirocin</td>
<td>04</td>
<td>02.1</td>
</tr>
<tr>
<td>Linezolid</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

Discussion

S. aureus is an important cause of community and hospital infections [Saravanan M et al., 2013]. Antibiotic resistant *staphylococci*, especially MRSA have become the most common cause of hospital acquired infections worldwide. MRSA is of concern, not only because of its resistance to methicillin, but also because of its general resistance to many other chemotherapeutic agents.

Therapeutic options for MRSA infections are limited to a very expensive and potentially toxic drugs like teicoplanin, vancomycin, linezolid and daptomycin etc [K Jayatilleke et al., 2012]. So, early detection of MRSA and formulation of effective antibiotic therapy, along with infection control is very important from an epidemiological view point. The present study showed the MRSA prevalence of 51.1% among clinical samples, which is comparable to the results of other studies [K Jayatilleke et al., 2012, Joshi S et al., 2013 & Bukhari SZ et al., 2011]. Cefoxitin disc diffusion method was done to screen MRSA strains because...
cefoxitin is a potent inducer of mecA gene, gives
clearer endpoints, less affected by the hyperproduction
of penicillinase, requires no special medium or
incubation temperature [TA Dhanalakshmi et al., 2012].

In our study, most of the isolates were resistant to
amoxycillin (96.2%) followed by ciprofloxacin (84.2%),
erythromycin (33.2%), Clindamycin (31.2%) etc. This
high prevalence of drug resistance may be due to the
irrational antibiotic usage, due to its easy availability at
the drug store without prescription, injudicious use in
hospitals and uncontrolled use in agriculture, animal
husbandry and fisheries [Tiwari HK et al., 2006].

In view of this antibiotic resistance, vancomycin
has been the drug of last resort. Transfer of
glycopeptide and macrolide resistant genes by
transconjugation among Enterococci and from
Enterococci fecalis to S. aureus have been reported
[Saha B et al., 2008]. The present study showed
decreased susceptibility to vancomycin. Four out of 97
(4.1%) MRSA isolates showed intermediate
susceptibility to vancomycin, but none of them showed
resistance to vancomycin. In a study by Sharma P et al.,
2012, 16 out of 156 (11.5%) S. aureus isolates showed
intermediate susceptibility to vancomycin and no
VRSA were detected. Study by Saderi H et al., 2005
showed that 3.5% of the isolates were VRSA and
another study by T.A. Dhanalakshmi et al., 2012 did
not report any case of VISA and VRSA. Though a very
few instances only, VISA are a definite entity now. But
the large scale development and subsequent spread of
resistance to vancomycin is perceived as a fearsome
threat to the already challenging therapy of MRSA
[Assadullah S et al., 2003].

The present study revealed the waning
susceptibility of staphylococci to vancomycin. This
may be as a result of prolonged exposure of organisms
to constant level of vancomycin in an opportune
environment [Tenover FC et al., 1998].

Infections involving hVISA pose unique problem.
Such strains are susceptible in vitro to vancomycin but
contain subpopulation of 1 in 10^9 cells that can grow in
the presence of ≥4μg/ml of vancomycin. Because of the
increased reports of vancomycin treatment failures and
poor outcomes of patients infected with hVISA, an
accurate and practical method for the detection of
hVISA is very important [Satola SW et al., 2011].

E-test macromethod is expensive and hVISA
testing by population analysis is labor-intensive, time
consuming and unsuitable for routine use [Fitzgibbon
MM et al., 2007]. Hence, BHI screen agar was easy to
perform and is used in the detection of hVISA. In the
present study, 19.2% were hVISA strains.

Limitation of the Study

MecA gene detection by PCR technique, which is
considered the gold standard method for MRSA
detection was not done in our study due to economic
constraints and also controls were not used in hetero
resistance (hVISA) detection methods.

Conclusion

The present study reveals the emergence of S.
aureus with decreased susceptibility to vancomycin and
indicates the magnitude of antibiotic resistance in and
around the study area. The major cause of this may be
unawareness and indiscriminate use of broad-spectrum
antibiotics. Rapid identification of patients harboring
VRSA, VISA or hVISA as well as prompt isolation and
adherence to infection control protocols are paramount
in controlling the dissemination of these pathogens.

Abbreviations

MRSA- Methicillin resistant Staphylococcus aureus
VISA- Vancomycin intermediate Staphylococcus aureus
VRSA- Vancomycin resistant Staphylococcus aureus
hVISA- Heterointermediate resistant Staphylococcus aureus
CLED- Cysteine lactose electrolyte deficient
CSF- Cerebrospinal fluid
ATCC- American type culture collection
MIC- Minimum inhibitory concentration
BHI- Brain heart infusion

References

1. Assadullah S, Kakru DK, Thoker MA, Bhat FA, Hussain
N, Shah A. Emergence of low level vancomycin
resistance in MRSA. Indian Journal of Medical
2. B Michael, P Richard, Pasuckle AW. Vancomycin-
Resistant Staphylococcus aureus: Prospectives on
cocci In: Collee JG, Fraser AG, Marmion BP, Simmons
A, Editors. Mackie & McCartney Practical Medical
Microbiology, 14th ed. (Churchill Livingston, New
susceptibility pattern of Staphylococcus aureus clinical
isolates and efficacy of laboratory tests to diagnose
Abbottabad. 2011;23(1):139-42.
5. Chang S, Sievert DM, Hageman JC, Boulton ML,
Tenover FC. Downes FP et al. Infection with
Vancomycin-resistant Staphylococcus aureus Containing
the VanA Resistance Gene. The New England Journal
6. Fitzgibbon MM, Rosney AS, Connell BO. Investigation
of Reduced Susceptibility to Glycopeptides among
Methicillin-Resistant Staphylococcus aureus isolates from
patients in Ireland and Evaluation of Arg screening
Methods for Detection of Heterogeneously Glycopeptide-
7. Hageman JC. Patel JB, Carey RC, Tenover FC,
McDonald LC. Investigation and control of Vancomycin-
intermediate and –resistant Staphylococcus aureus: A
Guide for Health Departments and Infection Control
23. Tiwari HK, Sen MR. Emergence of vancomycin resistant Staphylococcus aureus from a tertiary care hospital from northern part of India. BMC Infectious Diseases. 2006;6:150.

How to cite this article: Usha M G, Shwetha D C. Antibiotic susceptibility pattern among clinical isolates of *Staphylococcus aureus* with special reference to vancomycin. Indian J Microbiol Res. 2018;5(4):488-491.