Dear Friends
Season’s Greeting !!

Glucoma is acquired chronic progressive optic neuropathy characterized by optic nerve head changes and visual field changes which may or may not be associated with increase in intraocular pressure. Advances in glaucoma treatment are needed as available options do not appear to halt the progression of the disease. Hence, recent advances in glaucoma diagnosis and management do promise to develop therapies which are not solely dependent on lowering of intraocular pressure.

Rho kinase inhibitors is a group of guanosine triphosphates (GTPases) enzyme which lower intraocular pressure by reducing resistance to aqueous outflow with the help of relaxation of cells in trabecular outflow by decreasing myosin light-chain phosphorylation. Some of the Rho kinase inhibitors in clinical trials are: AR-12286 (Aerie pharmaceuticals), K 115 (Kowa pharmaceuticals), Y-39983 (also known as SNJ-1656). They can be used as an alternative to prostaglandin analogues and other drugs.

Surgical devices reduce intraocular pressure in a predictable way along with greater safety profile. The main hurdle is the cost of these implants like: Ex-press mini shunt is a stainless steel implant which is used under flap of sclera for controlled flow of aqueous humor post-operatively. This causes less hypotony induced surgically. Erosion of implant within a year of surgery is reported.

Ologen™ implant is a biodegradable lyophilized implant made of porcine collagen matrix used at the end of surgery in order to provide a scaffold for growth of fibroblast. This reduces scarring of sub-conjunctival tissue. Ologen is equally as efficient as mitomycin C. Devices that aim to increase the aqueous flow from inside the eye into Schlemm's canal:

Glaukos istent is a 1 × 0.3 mm implant made of titanium for insertion into Schlemm's canal through trabecular pathway. Results are promising in cases of open angle glaucoma. Trabectome is an electrocautery device which is used for stripping of trabecular meshwork, thereby creating direct connection between anterior chamber and canal of Schlemm’s. There is around 40 percent reduction of average intraocular pressure after surgery. The significant postoperative complication seen is intraoperatively blood in anterior chamber which is invariably seen in all cases. Patients with diagnosis of secondary open-angle glaucoma respond better with this device. Other devices facilitating flow into Schlemm's canal include: Hydrus implant (a nickel titanium implant designed for insertion into Schlemm's canal) and Stegmann canal expander (a tube with fenestrations is used for insertion into Schlemm's canal). Both of the above implants are still under clinical trials. One more device like CyPass micro-shunt (a 6 mm tubular shunt) is inserted into the suprachoroidal space. Hence it enhances uveoscleral outflow. It is also undergoing a clinical trial.

Production of aqueous humor can also be suppressed transcleral cyclophotocoagulation. Newer modalities have been devised which include: EyeOP1: This device delivers external ultrasound energy in order to destroy a part of ciliary body which is prime source for production of intraocular aqueous humor. As ciliary body is destroyed production of aqueous comes to a halt.

Neuroprotection, Neuromodulation and Neuro-recovery: Glaucoma is a neurodegenerative condition comprised of Retinal Ganglion Cell apoptosis. Different strategies are in pipeline in order to prevent RGC apoptosis i.e. neuroprotection, or to retard RGC apoptosis i.e. neuro-modulation or reverse the process of apoptosis i.e. neuro-recovery There are numerous pathways that aid in apoptosis of retinal ganglion cells. The pathways though complex do provide an opportunity for pharmacotherpeutic development. Brimonidine has been shown to exert neuroprotective benefit apart from its IOP lowering capabilities. Another new drug in neuro-protection group is memantine. This compound is an N-methyl-D-aspartate (NMDA) receptor antagonist and has proven its efficacy in animal models.

Apoptosis of retinal ganglion cells can also be achieved by drugs that interfere with the glutamate excitotoxic cascade including calcium channel blockers and inhibitors of glutamate release. Brimonidine also belongs to this group. Other medicines include those interfere with interaction of growth factors with Retinal ganglion cells like TNF-alpha blockers, nicotinamide that supplies and increase energy supply to retinal ganglion cells and those with neurotrophic properties like BDNF, NGF. Very little is known about their efficacy and safety profile.

There has been a lot of research in therapies of glaucoma and many new researches and ideas are in

Indian Journal of Clinical and Experimental Ophthalmology, April-June, 2019/5(2):140-141

Recent advances in glaucoma management

Rajendra P Maurya (MS, Ph.D)
Editor in Chief IJCEO
Assistant Professor & I/c Orbit, Ocular Oncology and Oculoplasty Unit
Department of Ophthalmology,
Institute of Medical Sciences,
Banaras Hindu University, Varanasi, (UP), INDIA
E-mail: editorijceo@gmail.com, mauryarp_bhu@yahoo.com

http://doi.org/10.18231/j.ijceo.2019.034
pipeline. More advances is awaited regarding early
detection, efficacious treatments and neuroprotection.

References
1. Rao PV, Deng PF, Kumar J, Epstein DL. Modulation of
aqueous humor outflow facility by the Rho kinase-specific
37.
2. Koga T, Koga T, Awai M, Tsutsui J, Yue BY, Tanihara H.
Rho-associated protein kinase inhibitor, Y-27632, induces
alterations in adhesion, contraction and motility in cultured
70.
3. Chen J, Runyan SA, Robinson MR. Novel ocular
antihypertensive compounds in clinical trials. Clin Ophthalmol
4. de Jong LA. The Ex-PRESS glaucoma shunt versus
trabeculectomy in open-angle glaucoma: a prospective
5. Marzette L, Herndon LW. A comparison of the Ex-PRESS™
mini glaucoma shunt with standard trabeculectomy in the
surgical treatment of glaucoma. Ophthalmic Surg Lasers
6. Seider MI, Rofagha S, Lin SC, Stamper RL. Resident-
performed Ex-PRESS Shunt Implantation Versus
7. Stein JD, Herndon LW, Brent Bond J, Challa P. Exposure of
Ex-PRESS Miniature Glaucoma Devices: case series and
8. Cillino S, Di Pace F, Cillino G, Casuccio A. Biodegradable
collagen matrix implant vs mitomycin-C as an adjuvant in
trabeculectomy: a 24-month, randomized clinical trial. Eye
(Lond) 2011;25:1598–606.
9. Buchaca O, Duch S, Milla E, Stirbu O. One-year analysis of
the iStent trabecular microbypass in secondary glaucoma. Clin
10. Minckler D, Baerveldt G, Ramirez MA, Mosaed S, Wilson R,
Shaarawy T, et al. Clinical results with the Trabectome, a
novel surgical device for treatment of open-angle glaucoma.
11. Ting JL, Damji KF, Siles MC Trabectome Study Group. Ab
inerno trabeculectomy: Outcomes in exfoliation versus
primary open-angle glaucoma. J Cataract Refract Surg
Ianchulev T. Global safety and efficacy study of
suprachoroidal microstent implantation as a stand alone
treatment for open angle glaucoma. Am Soc Cataract
Refractive Surg 2012;PA095.
13. Lin SC. Endoscopic and transscleral cyclophotocoagulation for
the treatment of refractory glaucoma. J Glaucoma
2008;17:238–47.
MP. Increased body mass index is associated with elevated
cerebrospinal fluid pressure. ARVO. 2011 Program 244;
Poster A5403.
15. Aptel F, Charrel T, Lafon C, Romano F, Chapelon JY,
Blumen-Ohana E, Nordmann JP, Denis P. Miniaturized high-
intensity focused ultrasound device in patients with glaucoma:
53.
17. Katz LJ the Brimonidine Study Group. Brimonidine tartrate
0.2% twice daily vs timolol 0.5% twice daily: 1-year results in
18. Wheeler LA, Gil DW, Wolde Massie E. Role of alpha-2
adrenergic receptors in neuroprotection and glaucoma. Surv
19. Levin LA. Retinal ganglion cells and neuroprotection for

How to cite this article: Maurya RP. Recent advances in
glaucoma management. Indian J Clin Exp Ophthalmol