Study of uric acid levels in hypothyroid patients

S K Bhargavi¹, Shiva Kumar²*, M. Prasad³

¹³Assistant Professor, Dept. of Biochemistry, ¹²Sri Siddartha Medical College, Tumkur, Karnataka, ³Narayana Medical Collage& Hospital, Nellore, Andhra Pradesh, India

*Corresponding Author: Shiva Kumar
Email: shpujari@gmail.com

Received: 8th December, 2018
Accepted: 27th December, 2018

Abstract

Introduction: The thyroid gland produces two hormones, Thyroxin (T4) and Triiodothyronine (T3). These hormones play a critical role in cell differentiation during development and help maintain thermogenic and metabolic homeostasis in the adult. Hypothyroidism is a clinical condition in which the thyroid hormones production is below normal. It affects approximately 2% of the population.

Materials and Methods: This study was conducted over a period of one year among subjects having hypothyroidism at Sri Siddhartha Medical College and Hospital, Tumkur, Karnataka. Ethics committee approval obtained prior to the study. Both female and male subjects were included in the study and all of them in the age group of 20-60 years. Patients (N = 120) who were diagnosed clinically and biochemically as hypothyroid for the first time who were attending OPD or admitted were enrolled for the study. 60 normal healthy individuals working in Sri Siddhartha Medical College were included as control group.

Results: Serum uric acid levels were significantly increased in hypothyroid subjects when compared to controls (p value = 0.0001).

Conclusion: It is important to evaluate serum uric acid levels routinely in hypothyroidism patients, to correct the possible altered purine nucleotide metabolism and to prevent the onset of gout. It may also help to observe set in myopathic changes in advanced hypothyroidism.

Keywords: Uric acid, Hypothyroidism, Triiodothyronine and Tetraiodothyronin.
the correlation between hypothyroidism and hyperuricemia is well established.

Table 1: Comparison of study parameters in hypothyroid patients (cases) and control subjects

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Hypothyroid (n=120)</th>
<th>Controls (n = 60)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum FT₃ (pg/ml)</td>
<td>2.02 ± 0.10</td>
<td>2.63 ± 0.11</td>
<td><0.0001</td>
</tr>
<tr>
<td>Serum FT₄ (ng/dl)</td>
<td>0.55 ± 0.09</td>
<td>1.23 ± 0.12</td>
<td><0.0001</td>
</tr>
<tr>
<td>Serum TSH (mIU/ml)</td>
<td>26.3 ± 1.68</td>
<td>2.34 ± 0.16</td>
<td><0.0001</td>
</tr>
<tr>
<td>Serum uric acid (mg/dl)</td>
<td>6.1 ± 0.29</td>
<td>4.33 ± 0.29</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

Fig. 1: Biochemical variation in cases along with controls

Serum Free T₃ p value and the 2-tailed p value is < 0.0001, this difference is highly statistically significant.
Serum Free T₄ p value and the 2-tailed p value is < 0.0001, this difference is highly statistically significant.
Serum Thyroid Stimulating Hormone p value and the 2-tailed p value is < 0.0001 by conventional criteria, this difference is this difference is highly statistically significant.
Serum Uric acid p value and the 2-tailed p value is <0.0001 by conventional criteria, this difference is this difference is highly statistically significant.

Discussion

In hypothyroidism, because of low metabolic profile ADP levels will be more as against ATP. Hence adenine is oxidized through xanthine oxidase system and liberates more uric acid. The purpose of the present study was therefore to determine the relationship between renal function and thyroid status. Thurman JM et al shows Long-standing hypothyroidism can cause significant reversible changes in renal function such as a decrease in sodium resorption in the proximal tubules, impairment in the concentrating and diluting capacities of the distal tubules, a decrease in urinary urate excretion, and a decrease in renal blood flow and glomerular filtration rate (GFR). The del Greco FR, et al17 shows in hypothyroid state, hypovolemia occurs due to decreased cardiac output shows fall in renal blood flow. Thyroxine was to an high in systemic and renal vasoconstriction and also finally leading to decreased renal blood flow.18

The cause of the low renal plasma flow and GFR observed is believed to be normally due to the commonly hypodynamic state of the Cardio vascular system in hypothyroidism. K Reisman SH et al19 and Kaptein EM.20 Hypothyroidism was related with low plasma renin, which might cause an high levels of creatinine and uric acid ranges.

Cause & effect not entirely clear. Data available are insufficient for proof. Challenge – adjusting for multiple comorbidities. Do reveal trends – more studies indicated the present study, based on a limited number of cases, showed a increased prevalence in hyperuricemia in hypothyroid patients. Hence analysis of uric acid levels in hypothyroid subjects may be used as an associated biochemical parameter to follow the course of the disease. It may also used to assess any myopathic changes are going on, as seen in advanced hypothyroidism.

Conclusion

Uric acid levels within physiological limits are elevated in hypothyroid subjects. Hypothyroidism affects renal blood flow, GFR, tubular function and also water and electrolyte balance.

Therefore, our assumption was the importance of the routine estimate of serum uric acid ranges in hypothyroid patients. The possible corrected purine nucleotide metabolism and also to prevent the onset of gout. It may also help to observe set in of myopathic changes in advanced hypothyroidism.
Acknowledgements
Cooperation with Dept. of Biochemistry, Narayana Medical College and Hospital, Chinthareddy palem Nellore, AP, India. 524003.

Conflict of Interest: None.

References
5. Burrow GN. Thyroid hormone biosynthesis. Thyroid Function and Disease. 1989:11-40.